

CL 100NB Nickelbasislegierung

Nickelbasislegierung in Pulverform, chemische Zusammensetzung CL 100NB in Anlehnung an ASTM B 637 UNS 07718

CL 100NB ist eine Nickelbasislegierug zur Herstellung von Bauteilen für Hochtemperatur-Anwendungen.

28 **Ni** 58,69

CHEMISCHE ZUSAMMENSETZUNG

Bestandteil	Richtwert (%)
Ni	50,0 – 55,0
Cr	17,0 – 21,0
Nb	4,75 – 5,50
Мо	2,80 – 3,30
Ti	0,65 – 1,15
Al	0,20 – 0,80
Со	0,0 – 1,0
С	0,0 – 0,08
Mn	0,00 – 0,35
Si	0,00 – 0,35
Р	0,000 – 0,015
S	0,000 – 0,015
В	0,000 – 0,006
Cu	0 – 0,3

ANWENDUNGSBEREICHE

Bauteile für Hochtemperatur-Anwendungen. Typische Einsatzbereiche sind der Turbinenbau (Luftfahrt oder stationäre Turbinen) oder im Motorsport im Bereich des Abgasstrangs.

TECHNISCHE DATEN NACH EMPFOHLENER WÄRMEBEHANDLUNG

Fließgrenze R _{p0,2} 1	1000 – 1100 N/mm²
Zugfestigkeit R _m ¹	1250 – 1350 N/mm ²
Bruchdehnung A 1	8 – 12 %
E-Modul ¹	ca. 200 MPa
Wärmeleitfähigkeit λ 2	ca. 12 W/mK
Thermischer Ausdehnungskoeffizient ²	ca. 13 · 10 ⁻⁶ K ⁻¹

¹ Zugversuch bei 20°C nach DIN EN 50125.

CL 100NB

Nickelbasislegierung

SCHLIFFBILDER

Probekörper (20-fache Vergrößerung)

Probekörper (20-fache Vergrößerung)

WÄRMEBEHANDLUNG

Wärmebehandlung unter Argon-Atmosphäre in 2 Schritten durchführen:

Zunächst Lösungsglühen bei 980°C für 1 Stunde, anschließend im Ofen abkühlen.

Danach Auslagern bei 720°C für 8 Stunden, in 2 Stunden abkühlen auf 620°C und diese Temperatur für weitere 8 Stunden halten.

Concept Laser GmbH

An der Zeil 8 D 96215 Lichtenfels

Sales Department

info@concept-laser.de T: +49 (0) 95 71. 949 238 F: +49 (0) 95 71. 949 249

MIKROSTRUKTUR

Bauteile aus der Nickelbasislegierung CL 100NB weisen nach dem Aufbau mit dem Metall-Laserschmelzverfahren LaserCUSING® ein homogenes, dichtes Gefüge auf.

² Spezifikationen gemäß Datenblatt des Werkstoffherstellers.